23 research outputs found

    Capacity Expansion of High Renewable Penetrated Energy Systems Considering Concentrating Solar Power for Seasonal Energy Balance

    Full text link
    With the increasing proportion of variable renewable energy which owns fluctuation characteristics and the promotion of the Clean Heating policy, the seasonal energy imbalance of the system has been more and more challenging. There is a lack of effective means to mitigate this challenge under the background of gradual compression of the traditional thermal unit construction. Concentrating solar power (CSP) is a promising technology to replace thermal units by integrating emergency boilers to cope with extreme weather, and can meet long-time energy balance as a seasonal peak regulation source. In this paper, we propose a long-term high-resolution expansion planning model of the energy system under high renewable penetration which integrates CSP technology for seasonal energy balance. With the projection to 2050, by taking the energy system in Xinjiang province which is a typical area of the Clean Heating project with rich irradiance as a case study, it shows that the optimal deployment of CSP and electric boiler (EB) can reduce the cost, peak-valley difference of net load and renewable curtailment by 8.73%, 19.72% and 58.24% respectively at 65% renewable penetration compared to the base scenario.Comment: 17 pages, 13 figure

    Collaborative planning and optimization for electric-thermal-hydrogen-coupled energy systems with portfolio selection of the complete hydrogen energy chain

    Full text link
    Under the global low-carbon target, the uneven spatiotemporal distribution of renewable energy resources exacerbates the uncertainty and seasonal power imbalance. Additionally, the issue of an incomplete hydrogen energy chain is widely overlooked in planning models, which hinders the complete analysis of the role of hydrogen in energy systems. Therefore, this paper proposes a high-resolution collaborative planning model for electricity-thermal-hydrogen-coupled energy systems considering both the spatiotemporal distribution characteristics of renewable energy resources and the multi-scale bottom-to-top investment strategy for the complete hydrogen energy chain. Considering the high-resolution system operation flexibility, this paper proposes a hydrogen chain-based fast clustering optimization method that can handle high-dimensional data and multi-time scale operation characteristics. The model optimizes the geographical distribution and capacity configuration of the Northeast China energy system in 2050, with hourly operational characteristics. The planning optimization covered single-energy devices, multi-energy-coupled conversion devices, and electric-hydrogen transmission networks. Last but not least, this paper thoroughly examines the optimal portfolio selection of different hydrogen technologies based on the differences in cost, flexibility, and efficiency. In the Pareto analysis, the proposed model reduces CO2 emissions by 60% with a competitive cost. This paper provides a zero-carbon pathway for multi-energy systems with a cost 4% less than the social cost of carbon $44.6/ton, and the integration of the complete hydrogen energy chain reduces the renewable energy curtailment by 97.0%. Besides, the portfolio selection results indicate that the system favors the SOEC with the highest energy efficiency and the PEMFC with the fastest dynamic response when achieving zero-carbon emissionsComment: 32 pages, 17 figure

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    The Future of Agriculture: Obstacles and Improvement Measures for Chinese Cooperatives to Achieve Sustainable Development

    No full text
    The Chinese government pays close attention to sustainable development and takes an active approach to strengthening and standardizing such development. As the organizational vehicle for China’s large population, cooperatives can organize 230 million small farmers to promote sustainable development. However, some scholars have raised concerns about Chinese cooperatives and questioned their role in promoting sustainable development. Based on a review of China’s government support policy, this study summarizes the development characteristics of nine cooperatives and summarizes issues from opposite aspects. Furthermore, this study also analyzes the basic situation of the Chinese government’s quality improvement pilot county initiative and draws conclusions about the best ways to achieve sustainable development. We also make some policy proposals on achieving the sustainable development of Chinese cooperatives

    Quench protection design of a 1.5 T superconducting MRI magnet

    No full text
    A 1.5 T superconducting MRI magnet has been developed in our laboratory. A passive quench protection system is employed to avoid the damage through the quench event. The coils are subdivided into several groups and a heater network is implemented accordingly. With the control volume method, the numerical model of the quench time is introduced. Different design schemes of the heater strip are compared. The simulation results of currents and voltages are illustrated and the temperature rise of the coils and the heaters are discussed

    Technical Note: Sequential Combination of Parallel Imaging and Dynamic Artificial Sparsity Framework for Rapid Free-breathing Golden-Angle Radial Dynamic MRI: K-T ARTS-GROWL

    No full text
    To develop and validate a fast dynamic MR imaging scheme. A novel approach termed K-T ARTificial Sparsity enhanced GROWL (K-T ARTS-GROWL) is proposed that integrates dynamic artificial sparsity and GROWL-based parallel imaging (PI).Golden-angle radial k-space data is acquired with the free-breathing sampling scheme and then sorted into a time-series by grouping consecutive spokes into temporal frames. The reconstruction framework sequentially applies PI and dynamic artificial sparsity. In the implementation, GROWL is taken as a special PI instance for its high computational efficiency and the K-T sparse is exploited to improve the PI reconstruction performance, because the dynamic MR images are often sparse in the x-f domain. In the final reconstruction procedure, artificial sparsity is constructed and fed back to the previous reconstruction.The K-T ARTS-GROWL results in high spatial and temporal resolution reconstructions. By exploiting dynamic artificial sparsity, the acceleration capability is further improved compared to the PI alone. The experimental results demonstrate that K-T ARTS-GROWL leads to significantly better image quality (P < 0.05) than the frame-by-frame GROWL and frame-by-frame ARTS-GROWL for in vivo liver imaging. Compared with the tested K-T reconstruction algorithms, the K-T ARTS-GROWL results in a better or comparable image quality and temporal resolution with greatly decreased computational costs.The proposed technique enables sparse, fast imaging of high spatial, high temporal resolutions for dynamic MRI. This article is protected by copyright. All rights reserved

    Influence of atmospheric trace elements wet deposition on soils and vegetation of Qilian Mountain forests, China

    No full text
    The biogeochemical cycling of trace elements (TEs) in forest ecosystems is important because it plays a role in providing essential nutrients to plants and soils and because it can potentially have toxic effects. In this study, we investigated the concentration of TEs in atmospheric wet deposition, vegetation and soil in Qinghai spruce (QS) and Qilian juniper (QJ) forests of the Qilian Mountains. Our results show that the average concentrations of Cu in rainwater in QS and QJ forests were 10.30 and 5.35 μg L−1, respectively, the highest concentrations of all TEs in these environments. We suggest that the particulate matter present in the air was the main contributor of TEs in atmospheric wet deposition, which is affected by element specificity, regional factors, and the scavenging process during rainfall events. Most vegetation and tissues had high concentrations of Zn, Ni, Pb, and Cu, suggesting that these elements have accumulated in plants. The Zn, Pb, and Ni levels in forest plants may be correlated with those in forest soils. Our study highlights the role that atmospheric wet deposition can play in affecting TEs cycling across forest ecosystems. Managers need to further reduce TEs levels in emissions from surrounding sources and improve long-term observation of TEs in forest ecosystems

    Stress Analysis of Winding Process, Cooling Down, and Excitation in a 10.7 T REBCO HTS Magnet

    No full text

    Disruption of the Metal Ion Environment by EDTA for Silk Formation Affects the Mechanical Properties of Silkworm Silk

    No full text
    Silk fiber has become a research focus because of its comprehensive mechanical properties. Metal ions can influence the conformational transition of silk fibroin. Current research is mainly focused on the role of a single ion, rather than the whole metal ion environment. Here, we report the effects of the overall metal ion environment on the secondary structure and mechanical properties of silk fibers after direct injection and feeding of silkworms with EDTA. The metal composition of the hemolymph, silk gland, and silk fiber changed significantly post EDTA treatment. Synchrotron FTIR analysis indicated that the secondary structure of silk fiber after EDTA treatment changed dramatically; particularly, the &beta;-sheets decreased and the &beta;-turns increased. Post EDTA treatment, the silk fiber had significantly decreased strength, Young&rsquo;s modulus, and toughness as compared with the control groups, while the strain exhibited no obvious change. These changes can be attributed to the change in the metal ion environment in the silk fibroin and sericin in the silk gland. Our investigation provides a new theoretical basis for the natural silk spinning process, and our findings could help develop a method to modify the mechanical properties of silk fiber using metal ions
    corecore